1 Differentiate $x+\sqrt{x^{3}}$.

2 The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6}{x^{3}}$. The curve passes through (1,4).
Find the equation of the curve.

3 A and B are points on the curve $y=4 \sqrt{x}$. Point A has coordinates $(9,12)$ and point B has x-coordinate 9.5. Find the gradient of the chord AB.

The gradient of AB is an approximation to the gradient of the curve at A . State the x-coordinate of a point C on the curve such that the gradient of AC is a closer approximation.

4 Differentiate $2 x^{3}+9 x^{2}-24 x$. Hence find the set of values of x for which the function $\mathrm{f}(x)=2 x^{3}+9 x^{2}-24 x$ is increasing.

5 Find the set of values of x for which $x^{2}-7 x$ is a decreasing function.
[3]

6 Differentiate $10 x^{4}+12$.

Fig. 10

Fig. 10 shows a solid cuboid with square base of side $x \mathrm{~cm}$ and height $h \mathrm{~cm}$. Its volume is $120 \mathrm{~cm}^{3}$.
(i) Find h in terms of x. Hence show that the surface area, $A \mathrm{~cm}^{2}$, of the cuboid is given by $A=2 x^{2}+\frac{480}{x}$.
(ii) Find $\frac{\mathrm{d} A}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}$.
(iii) Hence find the value of x which gives the minimum surface area. Find also the value of the surface area in this case.

8 Differentiate $6 x^{\frac{5}{2}}+4$.

9 A is the point $(2,1)$ on the curve $y=\frac{4}{x^{2}}$.
B is the point on the same curve with x-coordinate 2.1 .
(i) Calculate the gradient of the chord AB of the curve. Give your answer correct to 2 decimal places.
(ii) Give the x-coordinate of a point C on the curve for which the gradient of chord AC is a better approximation to the gradient of the curve at A .
(iii) Use calculus to find the gradient of the curve at A.

10 The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-6 x$. Find the set of values of x for which y is an increasing function of x.

11 A curve has gradient given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}+8 x$. The curve passes through the point $(1,5)$. Find the equation of the curve.

